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Design the Controller

* “Design Field-Oriented Control Algorithm” on page 1-2

* “Design Current and Position Scaling Subsystems” on page 1-3
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1 Design the Controller

Design Field-Oriented Control Algorithm

1-2

To implement the speed control algorithm for a motor, perform these tasks:

* Current scaling — Convert current from ADC counts to PU.

* Quadrature encoder position decoding — Read the quadrature encoder position counts and
calculate the rotor electrical position.

* Torque control — Implement current control in the d-q axis.
* Speed control — Implement speed control.

These steps help you implement the speed control algorithm for a PMSM using Motor Control
Blockset and are related to the model mcb _pmsm_foc qgep f28379d used in the example “Field-
Oriented Control of PMSM Using Quadrature Encoder”. They explain the procedure to tune the
control parameters for d-axis and g-axis current controllers and the speed controller.

“Design Current and Position Scaling Subsystems” on page 1-3

“Design Current Controller Subsystem” on page 1-6

1
2
3  “Perform Manual Gain-Tuning of Current Controller” on page 1-10
4 “Design Speed Control Algorithm” on page 1-12

5

“Perform Manual Gain-Tuning of Speed Controller” on page 1-14

In these steps, variables are used to define datatypes and execution times of the current and speed
controllers. See the initialization script linked to the example model mcb _pmsm_foc qgep 28379d
for details about the variables defined in these steps.

Tip A basic understanding of Simulink® is a prerequisite for following this workflow as these
workflow steps do not provide details on tasks like defining a datatype in a constant block or using
math operations blocks in Simulink.

See “Estimate PMSM Parameters Using Recommended Hardware” for estimating the motor
parameters. Then, see “Creating Plant Model Using Motor Control Blockset” on page 3-2 to design
a plant model. This helps you verify the control algorithm in simulation.
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Design Current and Position Scaling Subsystems

Use
1

these steps to design the current and position scaling subsystems:

Create the current scaling subsystem.

laOffset

| 1l

DataSioreRead

IbOffset

|1

PU_System.]_base/(MAX_ADC_CNT/2)

1/PU_System.| base

lab_meas_PU

v

Cutport

PU conversion
ADC counts to current Gai

This subsystem reads the current in ADC counts and converts it to per-unit (PU) values.

In this subsystem, the IaOffset and IbOffset Data Store Memory blocks are the ADC offsets for
current measurement and they are hardware specific. The file

mcb SetInverterParameters.m contains the default ADC offset (CtSensAOffset and
CtSensBOffset) for few commercially available inverters. For details about ADC offset calibration
in hardware, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset”.

In this subsystem, the motor phase current measured in ADC counts is converted to current in
PU. The PU_System.I base value refers to the base current in this subsystem. For details about
the PU system, see “Per-Unit System”. See the mcb_SetPUSystem.m file that computes the PU
values for the system.

You can use the base values for computing the real-world values from per-unit. To implement the
real-world or SI unit values, see the model mcb_pmsm _foc qep f28379d SIUnit used in the
example “Field-Oriented Control of PMSM Using SI Units”.

The IaOffset and IbOffset Data Store Memory blocks are used to share data between the current
and position subsystems.

Create the position scaling subsystem.

1-3



1 Design the Controller

1-4

1

QEP_Posiion_Count

2

QEP_Index_Latch

inport

MechZElec
Position H-l @
Theta_e
Offzet Outport
Offset
npart Mechanical to Electrical Position
w1 O™
Cuadrature o 1 Speed % Discrete IR
Decodar m e Measuremant « L Low Pass Filter ¥ * C.-?:)
Speed
i lddx IR Filter Outpart
uinti6
Speed Measurement

Quadrature Decoder

This subsystem reads the rotor position from the QEP pulse count.

In this subsystem, the Quadrature Decoder block reads the position count from the plant model
or hardware driver block. The block converts the rotor mechanical position in encoder position
counts to rotor mechanical angle in PU (0-1).

The Mechanical to Electrical Position (Mech2Elec Position) block adjusts the rotor mechanical
angle for QEP offset and converts it to electrical angle. The FOC algorithm needs the rotor
electrical angle to run the motor. To calculate the QEP encoder offset, see “Quadrature Encoder
Offset Calibration for PMSM Motor”.

The Speed Measurement block calculates speed from the rotor position. In the Speed
Measurement block parameters dialog box, set the Delays for speed calculation (number of
samples) parameter to 20. We selected the value 20 in this workflow so that the block can
measure the maximum speed of the motor that is under test. The Speed Measurement block
outputs the speed in PU.



Design Current and Position Scaling Subsystems

Block Parameters: Speed Measurement

Speed Measurement
Compute the speed from the rotor angular position.

6 (position) port accepts the position signal as either scalar fixed point or
scalar floating point data type.

Parameters

Position unit: Per unit
Speed calculation criteria:  Time interval for speed calculation

Discrete step size (s): |_Ts | i

Delays for speed calculation (number of samples): |20 E

Maximum measurable speed (RPM): -0.98352
Measurable speed resolution (RPM): 7.6757e-12

Speed unit: Per unit based on dialog

Per unit speed (RPM): |PU_System.N_base

Speed data type:

| fixdt(1,16) >>

v|:
:

Cancel | Hep | Apply

The resulting two subsystems (Calculate Phase Currents and Calculate Position and Speed) contain
the current scaling and position decoding logic.

la_aDC
la_ADC
Inport iab_meas PUF——————( 1 )
lab_fo_PU )
@—b In_ADC Outport
ib_ADC
Inport
Calculate Phase Currents
SubSystem
QEP_Position_Count Theta_a ——@
QEP_Position_Count Pos_PU
Inpart Outport
QEP_index_Laich spood——————»(_3 )
QEP_Index_Laich Speed_PU
Inpart Outport

Calculate Position and Speed
SubSystem

1-5



1 Design the Controller

Design Current Controller Subsystem

1-6

Use these steps to design the current controller subsystem:

1

From the Motor Control Blockset library in the Simulink Library Browser, use the Discrete PI
Controller with anti-windup & reset block (in the Controls/Controllers library) to design the d-
axis and g-axis current control. For example, this image shows the d-axis current controller
subsystem.

i PI Wi

Id_meas

niport

o D
[ 1 '8 anti-windup ¥

Vd_refl

P|_params.Kp i

Constan

Discrete Pl Controller
with anti-windup & reset

Pl_params.Ki_i*Ts —_—

Enable

CataStoreRead

The MATLAB® function mcb.internal.SetControllerParameters (in the model
initialization script) calculates the PI control gains for the d-axis and g-axis current controller and
the speed controller. For details about calculation of the controller gains, see “Estimate Control
Gains and Use Utility Functions”. For example, see the model initialization script file
mcb_pmsm_foc _gep f28379d data.m (used in the example “Field-Oriented Control of PMSM
Using Quadrature Encoder”) that uses a sampling time (T) of 50 ps.

In the subsystem diagram, the Enable variable is a Data Store Memory used to reset the
controller. Adding Enable variable is optional.

The subsystem also uses three constant blocks with these values:

* PI params.Kp_i
* PI params.Ki i*Ts
0

Create a similar subsystem for the g-axis current PI controller. Integrate the subsystems for d-
axis and g-axis PI controllers into a single subsystem (Current Controllers) that controls the d-
axis and g-axis currents.

Add the Clarke Transform, Park Transform, Inverse Park Transform, and Space Vector Generator
blocks from the Motor Control Blockset/Controls/Math Transforms library to the
Current Controllers subsystem (that you created in step 1) as shown in this figure.



Design Current Controller Subsystem

* Clarks ¢ He
@
Transform d L]
lab_meas_PU b B 1a [} Sak vd_ref
Inpert Tranat oy
Demux Clarke Transform g e a “
fa - 9 Inversa
Park
0]
sin From e B Ve
0
cs"“’ Park Transform Veret : — ’
@ Cosine nverse Park Transform - - Mu
PUE}—’FU s LT ok idq_ref_PU Space Vector Generator x
5
Pt cos lcosTheta]
Current_Controllers From
SubSystem
Sine-Cosine Lookup Gato

ldg_ref PU

Inport

3 Integrate the components that you created in step 2 into a single subsystem (Closed Loop
Control that implements closed loop field-oriented control) as shown in this figure.

lab_meas_PL
lab_maas_PU
Inpart
Pos PU Vabe in PU
Pes_PU “abe in PU
Inport Oulport
iia_ret_PU
Idg_rel PU
Inport

Closed Loop Control
SubSystam

F Y

Create an Output Scaling subsystem to scale the Pulse Width Modulation (PWM) outputs. This
subsystem outputs the normalized PWM duty cycles (0-1) for the plant model.

Sum

1 PWM_Duty_Cycles
Vabe ref + PWM_Duty_Cycles
Inport One_by_Two Cuiport
Gain

0.5

Constan
Qutput Scaling

5 Create a new subsystem by integrating the current scaling (Calculate Phase Currents), QEP
position decoding (Calculate Position and Speed), Closed Loop Control, and Output Scaling
subsystems. Add the Trigger block from the Simulink/Ports & Subsystems library to this
subsystem and set the Trigger type parameter to function-call.

1-7



1 Design the Controller

lab_ADC
Inport

Dernux

QEP_Position_Count
Inport

QEP_Index_Lalch

Inport

la_ADC

()

TriggerPort

lab_meas_PU

tab_b_PU

™ lab_meas_PU

Output scaling

Vabe in PU

Calculate Phase Currents
SubSystem

QEP_Position_Count Theta_e

QEP_Index_Latch Speed

Calculate Position and Speed
SubSystem

Idq_debug
) wa_ref_PU

—»—

Terminator

Closed Loop Control
SubSystem

——D

Speed PU
Outport

0.5

Constant

PWM_Duty_Cycles

»(Z)
PWM_Duty Cycles
Outport

6 Add a Function-Call Generator block from the Simulink/Ports & Subsystems library to the
subsystem created in step 5. Set the Sample time parameter of the block to equal the control-
loop sample time, T (that has a default value of 50e-6 s).

fi)

ADCINTY
S-Function

laOffiset

IbOffset

DataStoreMemary

b

b

Trigged()
lab_ADC

Idg_ref_PU

QEP_Position_Count

QEP_Indax_Laich

PWM_Duty_Cycles b

SubSysiem

DataStoreMemory

7 Integrate the plant model and the controller subsystem that you created in step 6. For detailed

steps on how to create a plant model for a motor control system, see “Creating Plant Model

Using Motor Control Blockset” on page 3-2.
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Design Current Controller Subsystem

i6q_ret PU

GEP_Position_Count

PWM_Duty_Cycles

SubSystem

laOffset | | IbOffset | Enable |
DataStoreMemory D y femory O
—
m [m
Cil
RateTransition
Constant LdTrq / \
{ ;\ancuw S
. N\
350 MirSpd B s
‘Surface Mount PMSM
Average inverter
Scope SubSystem Scope
Speed_PU
Outport

‘Sensor_Measurements
SubSystem
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1 Design the Controller

Perform Manual Gain-Tuning of Current Controller

1-10

This step shows you how to manually tune the gains of the d-axis and g-axis current controllers. This
step is optional, however you can use it to tune the control gain parameters.

The procedure includes adding a step change to the Id ref current and analyzing the current
controller performance using the step response of the Id meas current to tune the d-axis current
controller. It explains a similar process for the Iq ref current to tune the g-axis current controller.

Before starting the manual tuning procedure, you should lock the rotor in the plant model to ensure
that the motor does not run when you provide a step change to Id ref or Iq_ref currents. In the
Surface Mount PMSM block parameters dialog box, set the Mechanical input configuration

parameter to Speed. Set the Spd input (of the Surface Mount PMSM block) to 0 to ensure that the
rotor is locked.

|§, Block Parameters: Surface Mount PMSM x
Surface Mount PMSM (mask) (link)

Medel the dynamics of a three-phase surface mount permanent magnet synchronous
maotor (PMSM) with sinusoidal back electromotive force.

Block Options

Mechanical input configuration: Speed % I
Simulation type: Discrete b
Sample Time (Ts): |_Ts_rnotcr

Load Parameters:

File: | Browse

Load from file Save to file

Parameters Initial Values

Number of pole pairs (P): [_gmsm_:p It
Stator resistance per phase (Rs): ipr‘nsm_Rs I i [Ohm]
Stator d-axis inductance (Ldg_): |pmsm.Ld i [H]

Permanent flux linkage constant (lambda_pm): v | |pmsm.FluxPM | [whb]

Cancel Help Apply

The integrated plant and controller subsystem simulation model enables you to manually tune the
gains of the current controllers. Provide a step input to Iq_ref in the range (0 to 0.2) PU and
observe the measured Iq_meas current feedback. Adjust the control parameters of the g-axis current
controller to meet your control objectives.



Perform Manual Gain-Tuning of Current Controller

l laOffset |

| IbOffset

Enable |

DataStoreMemory

DataStoreMemory

DataStoreMemory

X

lab_ADC

idg_ref_PU

(QEP_Pasition_ Count

QEP_index_Latch

PUWM_Duty_Cy

[ ]

Scope

Speed_PU
Outport

Average Inverter
SubSystem

Scope

Info,

P ™
| | PhasaCurr
\ /
PhaseVoll . 74

il MuTrg

Surface Mount PMSM

I m
RT1
RateTransiy

a

PhaseCurr

QEP._t

Sensor_Measurements

SubSystem

Simulate the model and plot the Iq ref PUand Iq meas PU current signals and analyze the step
response. This helps you to tune the control parameters for the g-axis current controller to meet the
control objectives.

Ig_ref PU, Ig_meas PU
T T T

T T T T T T T
lg_ref PU l
lq_meas PU
0.25- .
02~ I-J v--
0.15p -
0i1r -
0.05F =
of 1 I 1 L I 1 L I 1 L ]
0.4%5 0.499 0.5 0.501 0.502 0.503 0.504 0.505 0.506 0.507

Follow the same procedure for the Id ref current to tune the d-axis current controller. After tuning
both current controllers, set the Mechanical input configuration parameter, in the Surface Mount
PMSM block parameters dialog box, back to Torque.

1-11



1 Design the Controller

Design Speed Control Algorithm

Use these steps to design a speed control algorithm:

1

3

1-12

Create a speed controller subsystem. The current controller subsystem that you created earlier
uses the Iq_ref current output of the speed controller subsystem as an input.

To create a speed controller subsystem, open the Simulink Library Browser and select the
Discrete PI Controller with anti-windup & reset block from the Motor Control Blockset/
Controls/Controllers library.

armor

h J
x

PI_params Kp_speed

- . Pl With
Pl_params Ki_speed"Ts_speed w KT, snt-windup ¥ —h@

lgy_ref
Enabie =J>C P Reset

DataSioreRead Logic

Discrete Pl Controlles
with anti-windup & reset

The MATLAB function mcb.internal.SetControllerParameters (in the model initialization
script) calculates the PI control gains for the d-axis and g-axis current controller and the speed
controller. For details about calculation of the controller gains, see “Estimate Control Gains and
Use Utility Functions”. For example, see the model initialization script file
mcb_pmsm foc gep f28379d data.m (used in the example “Field-Oriented Control of PMSM
Using Quadrature Encoder”) that uses a sampling time (Ts speed) of 500 ps. Optionally, you can
use the Enable Data-Store Memory block to reset the controller.

Create a subsystem for the speed controller and add Rate Transition blocks (from the
Simulink/Signal Attributes library) to the subsystem inputs with a sample time of
Ts speed (execution time of the speed control loop).

.
> - Speed_ref PL
m m
RateTransition
Ig_raf_PU R
=
| Speed_meas PU
M m
Rate Transition

Speed Controd

SubSvystem

Integrate the speed controller subsystem (that you created in step 2) with the integrated current
controller and plant model subsystems. Connect the Iq_ref PU output port of the speed



Design Speed Control Algorithm

controller subsystem to the current controller subsystem input port through a Rate Transition
block. The Rate Transition block is needed because the two ports execute at different sample
rates. This figure shows an example of the parameter settings of the Rate Transition block
connected to the speed controller and the current controller subsystems.

E Block Parameters: Rate Transition2 X
RateTransition
Handle data transfer between different rates and tasks.

Parameters

B4 Ensure data integrity during data transfer
[ Ensure deterministic data transfer (maximum delay)
Initial conditions:

0 £
Output port sample time options: Specrfy hd
Output port sample time:

fl
? | [T

This figure shows the integrated speed controller, current controller, and plant model
subsystems.

‘ 1a0ffset | ‘ IbOfiset |

D: D

Toowl) Goto

Goto

Average Inverter
SubSystem
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1 Design the Controller

Perform Manual Gain-Tuning of Speed Controller

To manually tune the speed controller subsystem, provide a step input (in the range 0.2 to 0.5 PU)
to the Speed ref PU input in the speed controller subsystem (Speed Control). Monitor the
measured speed step response Speed meas PU and adjust the speed controller subsystem
parameters to meet your control objectives.

This figure shows the step response of the speed controller.

4 Scope - O >

File Jools View Simulation Help -

9- SOP® Q- B F@-

Ready Sample based  T=2.000

This procedure shows a method to implement speed control for a PMSM in simulation. Run the
simulation and analyze the controller performance.

You can generate C code from this control algorithm using Embedded Coder®. In addition, you can
deploy this code and the hardware drivers to the target hardware.

1-14
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Code Verification and Profiling Using PIL Testing

In processor-in-the-loop (PIL) simulation, the control algorithm executes in the target hardware, but
the plant model runs on the host machine. The plant model simulates the input and output signals for
the controller and communicates with the controller by using the serial communication interface.
This functionality allows you to use PIL simulation to determine the execution time on the target
hardware, which you can then compare with the execution time for simulating the model on the host
machine.

The execution time, or the performance metric of an algorithm that you obtain from PIL simulation,
helps you detect algorithm overrun on the target hardware. The PIL profiling report shows the
average and maximum execution times of an algorithm on the target hardware. This example explains
PIL profiling on Texas Instruments™ LAUNCHXL-F28379D hardware board.

This example uses the mcb_pmsm_foc_sim.slx model to show code verification in PIL simulation.
This example shows PIL profiling for the Current Control subsystem in the model. This subsystem
includes the Field-Oriented Control (FOC), current scaling (per-unit conversion), speed measurement,
and rotor position scaling (computation of angle from the encoder position counts) algorithms. The
PIL profiling report shows the average and maximum execution times of the control algorithm in the
target hardware.

This example consists of these tasks:

» Verify code execution by using PIL testing by comparing the algorithm in the simulation and target
hardware operating modes.

* Perform PIL profiling by measuring the algorithm execution time in the target hardware and
generate the PIL profiling report.

Required MathWorks Products

* Embedded Coder
* Embedded Coder Support Package for Texas Instruments C2000™ Processors

Supported Hardware
« LAUNCHXL-F28379D controller hardware board

Prepare PIL Model

1  Openthe mcb _pmsm foc sim.slx model.

open_system('mcb_pmsm_foc sim.slx');

1-15



1 Design the Controller

PMSM Field Oriented Control

Duty_PIL

SpeedRef IdgRef PU Duty_Cycles Feedbacks_sim —b-
. Spead_fb_PIL
Speed_Meas_PU Feedbacks_sim Speed_fb
Speed Control Current Control Inverter and Maotor - Plant Model
Explore more:
1. Edit motor & inverter parameters
Motor Control Blocksst v1.0 2.5 late th odel
Copyright 2020 The MathWorks, Inc. _simutate this mode

This model simulates the PMSM motor and the FOC algorithm for closed-loop speed control.
On the Hardware tab of the Simulink toolstrip, click Hardware Settings.

In the Configuration Parameters dialog box, under Hardware Implementation, set the
Hardware board field to TI Delfino F28379D LaunchPad.

1-16



Code Verification and Profiling Using PIL Testing

&4 Configuration Parameters: mcb_pmsm_foc_sim/Configuration (Active)

Q

Solver
Data Import/Export
Math and Data Types

» Diagnostics
Hardware Implementation
Model Referencing
Simulation Target

» Code Generation

» Coverage

» HDL Code Generation

Hardware board: | Tl Delfino F283790 LaunchPad

Code Generation system target file: erttlc
Device vendor: Texas Instruments

» Device details

Hardware board settings

¥ Target hardware resources

-

Device type: C2000

Cancel

Help

Apply

Verify Code by Using PIL

1 In the Configuration Parameters dialog box, select these configuration settings under Hardware
Implementation > Hardware board settings > Target hardware resources > PIL:

a Communication Interface — Select serial.
SCI module — Select SCI_A.

Serial port in MATLAB preferences — The model automatically detects the
communication port to which you have connected the hardware. This parameter remains

unchanged for the rest of the currently active MATLAB session. Click the Refresh button to
detect the communication port again.

1-17




1 Design the Controller

Hardware board settings

¥ Target hardware resources

Groups
Build options

Communication interface: |serial | -

Clocking SCI module: |SCI_A
ADC_A module: ¥ | -

ADC B Serial port in MATLAB preferences: |COM3 - | | Refresh
ADC C
ADC D

2 QOpenthemcb PIL config TI.m script file to set the configuration parameters.

edit('mcb PIL config TI.m');
3 Update the model name and stop time in the script.

| mcb_PIL_config Tlm | + |
1 F mck PIL config TI initializes the congiuration parameter for PIL profiling
2 i
3 % For PIL profiling, update the below in MATLABR script
4 % model - name of the model identified for PIL profing
5 % StopTime - time reguired for profiling. Ensure algorithm reaches steady
[ % state within this specified time.
7 i
g % This code is tested for TI LAUNCHXL-F25379%D (THMS320F28379d)
9 %
10 % Note: Before running the script, ensure COM port is updated in
11 % config set-rhardware implementation->Target hardware resources->FPIL
1z %
13 % Copyright 2020 The MathWorks, Inc.
14
15 = model = 'mck pmsm foc sim';
laé — set param(model, "'StopTime’,"0.5") ;
17 — set_param(model, 'SimulationMode’, "normal') ;
18 — set_param(model, 'EeturnWorkspacefutputs', 'on'):
19— set_param(model, 'CodeExecutionProfiling', 'on'):
20 — set_param(model, 'CodeProfilingInstrumentation’, "'coarse');
21 — set_param(model, 'CodeProfilingSavefptions', 'SummaryOnly') ;
22 — set_paramimodel, 'CreateSILPILElock', "FIL');
A= set param(model, 'DefaultParameterBehavior', 'Inlined') ;
24

4 Run the script to update the configuration parameters of the simulation model and the PIL
preferences.
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5 Right-click the Current Control subsystem in the mcb_pmsm_foc sim.slx example model.
Under the C/C++ Code menu, select Deploy this Subsystem to Hardware.

P4 mcb_pmsm_foc_sim * - Simulink prerelease use e
SIMULATION DEBUG MODELING FORMAT HARDWARE APPS SUBSYSTEM BLOCK Open

Open In New Tab
& & |
Hardware Board » S| F— nf P Open In New Window
et ~ || Stop Time |In §
[ TIDelfino F28379D Lavnchpag v | TEdwar= o control Monitor || MATLAB
Settings Point Panel & Tune Workspace & Cut Ctrl+X
HARDWARE BOARD PREPARE RUN ON HARDWARE % Copy ctri+C
E mcb_pmsm_foc_sim Paste Ctrl+V
_ o it Through Ctrl+Shift+Y
g @® m:b_pmsm_foc_slm » emment Thraug rieshifte
T Comment Out Ctrl+Shift+X
E @ Uncomment
a Delete Del
PMSM Field Oriented Control .
— Find Referenced Variables
= Subsystem & Model Reference 4
Test Harness 4
1 Observers »
Format 4
Rotate & Flip 4
Arrange 4
- Mask 4
" Speed_Ref_PU dq_ref_PU Duty
L — vy ik
SpeedRaf ldgRef PU -
‘ Signals & Ports 4
Speed Meas_PU s
e—— Model Slicer 4
Speed Control .
Requirements 4
Linear Analysis 4
Design Verifier 4
Coverage 4
Motar Gontral Biocksst w10 Maodel Advisor 3
Copyright 2020 The MathWorks, Inc. I
Fixed-Point Tool..
Identify Madeling Clones 5
Model Transformer 4
C/C++ Code ¥ 8% Embedded Coder Quick Start
HDL Code ' @ Code Generation Advisor
PLC Code 4
[2)  Deploy this Subsystem to Hardware s
Polyspace > Export Functions
Block Parameters (Subsystem) EEnE RNE
Properties... Navigate To C/C++ Code
Help Open Subsystem Report

The system displays the Build code for Subsystem dialog box. Set the Storage Class to
Inlined for all parameters.
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PL Build code for Subsystem:Current Control — O *

Fick tunable parameters

Variahle Marme Class Storage Class
HH PI_params struct Inlined |
HH PU_Systern struct Inlined w
T double Inlined vl E

el
Blocks using selected variable
Block Farent
.
bl

| Build || cancel || Hep |

Status
Select tunable parameters and click Build

6 Click Build to create a model named untitiled that includes a PIL subsystem called Current
Control.
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P4 untitled * - Simulink prerelease use = O X
SIMULATION DEBUG MODELING FORMAT HARDWARE APPS
Hardware Board e
PREPARE ) REVIEW } EPLOY
[ TIDelfino F28379D LaunchPad ~ ~ | PREFARE | s cDwaRE MESAEE [[Ees
v v v v
HARDWARE BOARD Y
b untitled o
: g
£ | @ |[Paluntited >3
T K ﬁ
1 Outy Ctes 5
_i‘_
=1
) eedbacks_s [ }
Current Control
Ready 100% FixedStepDiscrete

7 Rename the Current Control subsystem to Current Control (PIL).
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i P4 untitled * - Simulink prerelease use — O
SIMULATION DEBUG MODELING FORMAT HARDWARE APPS BLOCK
Hardware Board RUN ON
- 2] = E > : EVIEW RESULT i

[ T1 Delfino F28379D LaunchPad ~ ~ || PREPARE | L appwape | REVIEWRESULTS | DEPLOY
v v v v
HARDWARE BOARD
g untitled
& ® Eunﬁtied
%
@ } dq_ref PU Duty Cycles p
PIL
= | |
} Fas Speed fo P
(]
]

8 Copy the Current Control (PIL) subsystem and replace the Current Control subsystem in the

mcb_pmsm_foc sim.slx example model.

SpeedRef

Speed_Ref_PU

Speed_Meas_PU

Speed Control

|
» J
IdgRef_PU

PMSM Field Oriented Control

Idg_ref_PU Duty Cycles

Feedbacks_sim Speed_fb

Current Control

Idg_ref_PU Duty Cycles
PIL

Feedbacks_sim Speed_fb

L3

Duty_Sim =
>
Speed_fb_Sim —
‘ Duty PIL
$ Duty_Cycles

Speed_fb_PIL

Current Control (PIL)
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Feedbacks_sim

Explore more:

1. Edit motor & inverter parameters

2. Simulate this model
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In the PIL mode, the system deploys the Current Control (PIL) subsystem to the target and
executes the subsystem in the target hardware.

9 To compare the algorithm execution on the host machine simulation and in the PIL simulation,
connect the Current Control subsystem parallely to the Current Control (PIL) subsystem. In

addition, enable signal logging in the subsystem outputs.

PMSM Field Oriented Control

Idq_ref_PU Duty Cycles| »—
Duty_Sim

Feedbacks_sim Speed_fb L
- R Speed_fb_Sim =

Current Control

RI
convert = Speed_Ref_PU Idg_ref_PU Duty Cycles
am
Duty PIL ‘
PIL - Duty_Cycles Feedbacks_sim

SpeedRef IdqRef_PU
Speed_fb_PIL

> Speed_Meas_PU Feedbacks_sim Speed_fb

k3

Speed Control Current Control (PIL)

Explore more:
Motor Control Blockset v1.0 ;_ 4“ lT)c;tO:’h& Inve:elr arameters
Copyright 2020 The MathWaorks, Inc. omutate this moce

10 On the Simulink toolstrip, select the SIL/PIL Manager app from the Apps tab.

*i mcb_pmsm_foc_sim - Simulink prerelease use

SIMULATION DEBUG MODELING FORMAT HARDWARE APPS
(% ‘ s\l-'p\' 5 X
Get CODE VERIFICATION, VALIDATION, AND TEST a4
Add-Ons «
]
ENVIRONMENT

SIL/PIL
Manager

g
,g ® mm,pmsmjuc,sum ¥

11 On the SIL/PIL toolstrip, select SIL/PIL Sim Only.

%i mch_pmsm_foc_sim - Simulink prerelease use

SIMULATION DEBUG MODELING FORMAT HARDWARE APPS SIL/PIL x
System Under Test | Top madel - | = ()
e & W sprmds | & &
Simulation Meode | Morma 7 | . . - . - -
Automated Settings  Monitor Fact art Step Back Run £ 5to Compare
Venfication | SIL/PIL Mode | Software-in-the-Loop (SIL} =~ | - Signals « - Venfication Forward Runs «
RUN AUTOMATED VERIFICATION RESULTS

Automated Verification
Simulate model, generate and run code in SIL/PIL simulation,
and compare results

& Simulation Only
Simulate model without using SIL/PIL

PMSM Field Oriented Control

SIL/PIL Simulation Only
Run generated code using SIL/PIL

=
12 Select Model blocks in SIL/PIL mode in the System Under Test field.
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9} mcb_pmsm_foc_sim - Simulink prerelease use

SIMULATIONM DEBUG MODELING FORMAT HARDWARE APPS SIL/PIL X
ISystem Under Testl Madel blocks in SIL/PIL ... - = o
[T . ] @ ﬁ StopTime @ @ UD @
Top Medel Mod op mode

SIL/PIL Sim P lals £ Settings Monitor o Fast Restart Step Run Step Stop Data

Only ~ | Model blocks in SIL/FIL mode | - Signals = Back « SIL/PIL Forward Inspectar =

MODE PREPARE RUN RESULTS
‘g mch_pmsm_foc_sim
g @® mcb_pmsm_foc_sim >
3
SR

13 Click Run SIL/PIL on the SIL/PIL toolstrip to build the Current Control (PIL) subsystem and
deploy it to the target.

After the system deploys the subsystem, the Current Control (PIL) subsystem executes on the
target hardware processor, while the plant model runs on the host machine.

Analyze PIL Profiling Results

When PIL simulation ends, the system generates a profiling report.

Note PIL simulation takes more time than the host-machine-based simulation. This is because of the
serial communication (related to inputs and outputs of the Current Control (PIL) subsystem) between
the host machine and subsystem that runs on the target hardware.
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Cea [ 4 % o

 Code Execution Profiling Report for mecb_pmsm_foc_sim/Current
Controll

| The code execution profiling report provides metrics based on data collected from a SIL or PIL execution. Execution times are calculated from data
| recorded by instrumentation probes added to the SIL or PIL test harness or inside the code generated for each component. See Code Execution
| Profiling for more information.

| 1. Summary

Total time 54531910
Unit of time ns
| Command Iepoﬂ(execptionl:'mﬁl-le: '"Units', 'seconds’, 'ScaleFactor’, 'le-
09'. NumericFormat', "%0.0f);
Timer frequency (ticks per second) 2e+08
Profiling data created 15-Jan-2021 13:00:17

| 2. Profiled Sections of Code

Section Maximum Average Maximum Self Average Self Calls
Execution Time Execution Time Time in ns Time in ns
in ns in ns
[+] Current_initialize 1933 1935 1010 1010 1 & 4 4. ]
[+] Current step [3e-05 0] 3360 3432 380 380 10001 & 4 4]
Current_terminate 140 140 140 140 1 [E 4

3. CPU Utilization [hide]

OK Help

This profiling report, which is for the fixed-point datatype, shows the maximum and average
execution times of the Current Control (PIL) subsystem running on the target hardware.

You can use the Data Inspector button on the Simulation tab to compare the signals logged during
host-machine-based simulation and PIL simulation (executed on the target). This helps you verify the
accuracy of host-machine-based simulation and PIL simulation.

This plot compares the speed feedback signals from the Current Control (PIL) and Current Control
subsystems.
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» Speed feedback — Host based simulation w Speed feedback — PIL simulation

If the execution time exceeds 60% of the budgeted time, you can optimize the algorithm using one of
these techniques:

* Execute from RAM.

* Offload some functionalities to CLA or other CPUs.

* Scale the algorithm to run at every alternate cycle.

* Move less critical functionalities like speed calculation to a slower rate.

For more details on SIL/PIL code verification, see:

* Code Verification and Validation with PIL
* Code Execution Profiling with SIL and PIL
» SIL/PIL Manager Verification Workflow

1-26


https://www.mathworks.com/help/supportpkg/texasinstrumentsc2000/ug/code-verification-and-validation-with-pil.html
https://www.mathworks.com/help/ecoder/ug/configuring-code-execution-profiling.html
https://www.mathworks.com/help/ecoder/ug/verification-workflow-with-silpil-manager.html

Deploy and Validate System

* “Prepare Target Hardware” on page 2-2

* “Add Hardware Drivers to Simulation Model and Deploy to Target Hardware” on page 2-4
» “Task Scheduling in Target Hardware” on page 2-6

* “Adding ADC Driver Library Block” on page 2-8

* “Adding Quadrature Encoder Driver Block” on page 2-11

* “Add PWM Driver Block” on page 2-14

* “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-18

* “Run in Open-Loop and Switch to Closed-Loop” on page 2-19

* “Model Configuration and Hardware Deployment” on page 2-23

* “Validate System” on page 2-25



2 Deploy and Validate System

Prepare Target Hardware

2-2

Follow these steps to prepare the target hardware before you deploy the control algorithm developed
using Motor Control Blockset to it.

Note You need Embedded Coder Support Package for Texas Instruments C2000 Processors to run
these steps.

We recommend that you see these references before following this procedure:

* Getting Started with Embedded Coder Support Package for TT C2000 Processors

* “Getting Started with Embedded Coder Support Package for Texas Instruments C2000
Processors” (Embedded Coder Support Package for Texas Instruments C2000 Processors)

In addition, try running the motor using open-loop control first using the “Run 3-Phase AC Motors in
Open-Loop Control and Calibrate ADC Offset” example.

Verify Direction of Rotation of Motor

The phase sequence of the motor connection in the target hardware determines the direction of
rotation of the motor. The Motor Control Blockset example models consider the direction of rotation
during the position ramp-up as a positive direction and the corresponding measured speed as
positive. It is recommended that you run the motor in open-loop control with a position ramp from 0
to 1 and ensure that the position feedback is positive. The example models in Motor Control Blockset
use this convention for the motor's direction of rotation.

For the supported hardware, the algorithm in the example “Quadrature Encoder Offset Calibration
for PMSM Motor”, runs the motor and finds the offset between the d-axis of the rotor and the encoder
index pulse (when the rotor is aligned to the d-axis of the stator). The red LED in the host model for
this example turns on when the direction of rotation is opposite. When this happens, you should
change the phase sequence of the motor wiring (swap any two motor wires).

See the example “Hall Offset Calibration for PMSM Motor” to identify the direction of rotation of a
motor that uses Hall sensors.

Note When you use a Hall sensor, ensure that the Hall sequence updated in the Hall Speed and
Position and Hall Validity blocks matches the sequence of the actual Hall signals. If you update an
incorrect Hall sequence, the direction read by the target hardware is the opposite of the actual
direction.

Calibrate Current Sensor

The signal conditioning circuits for the current sensor introduces a voltage offset in the analog to
digital converter (ADC) input when measuring both the positive and negative current. For example,
an ADC with a voltage reference of 3.3 V can have an offset of 1.65 V when using the Texas
Instruments BOOSTXL-DRV8305 hardware. This offset varies due to tolerances of the passive
components available in the signal conditioning circuit. It is recommended that you measure the ADC
offset of the hardware during initialization.


https://www.mathworks.com/videos/getting-started-with-embedded-coder-support-package-for-ti-c2000-processors-1573540550102.html

Prepare Target Hardware

The hardware initialization subsystem, which is used in the majority of Motor Control Blockset
example models, computes the average current sensor ADC values and uses them as ADC offset
values for measuring the current. The subsystem represents the ADC offset values in ADC counts.

See the example “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset” to
manually calibrate the ADC offset and update the computed offset value in the model initialization
script file.

See the Hardware Init subsystem available in the example “Field-Oriented Control of PMSM Using
Quadrature Encoder” to understand the ADC offset calculations that the example model performs
before starting the closed-loop motor control.

Calibrate Position Sensor

For a PMSM, the position used in the current control algorithm should align with the d-axis position
of the rotor. By default, the quadrature encoder position sensor reads the mechanical position of the
rotor with reference to its index pulse. The position offset is the position read by the quadrature
encoder when d-axis of the rotor aligns with phase a. To obtain an accurate motor position, use this
position offset value to correct the position read by the quadrature encoder sensor. Then provide the
corrected motor position value as an input to the current control algorithm.

A mismatch between the actual rotor position and the position provided to the current controller
affects the motor functionality and performance.

For more details, see the examples “Quadrature Encoder Offset Calibration for PMSM Motor” and
“Hall Offset Calibration for PMSM Motor”.
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Add Hardware Drivers to Simulation Model and Deploy to
Target Hardware

2-4

This topic explains the steps for adding the hardware drivers to the simulation model and deploying
the model to the target hardware.

This topic uses the model mcb _pmsm_foc sim as a example to explain the procedure for hardware
deployment. The model mcb _pmsm_foc sim simulates the field-oriented control (FOC) algorithm for
implementing speed control for a PMSM.

As an example, the procedure explains about deploying the speed control algorithm to the target
hardware Texas Instruments LAUNCHXL-F28379D (connected to Texas Instruments BOOSTXL-
DRV8305). These are the hardware interface details:

Interface Pin on LAUNCHXL-F28379D
Phase-A input of the motor ADCINC2
Phase-B input of the motor ADCINB2
PWM A output from the motor EPWMI1A
PWM B output from the motor EPWM2A
PWM C output from the motor EPWM3A
Enable Driver BOOSTXL-DRV8305 GPIO124

These steps explain how to add the hardware driver blocks from the Embedded Coder Support
Package for Texas Instruments C2000 Processors to the simulation model before deploying the
control algorithm to the target hardware LAUNCHXL-F28379D (connected to BOOSTXL-DRV8305).
1  “Task Scheduling in Target Hardware” on page 2-6

2 “Adding ADC Driver Library Block” on page 2-8

3 “Adding Quadrature Encoder Driver Block” on page 2-11

4 “Add PWM Driver Block” on page 2-14

5 “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-18

6 “Run in Open-Loop and Switch to Closed-Loop” on page 2-19

7 “Model Configuration and Hardware Deployment” on page 2-23

You can use MATLAB variables to define or customize parameters like the execution time of the
current controller or the speed controller. See the model initialization script associated with the
example model mcb_pmsm_foc_sim for details about the variables defined in these steps.

To understand the prerequisites for deploying the control algorithm to any target hardware, see
“Prepare Target Hardware” on page 2-2. For details about the hardware connections, see “Hardware
Connections”.

To implement a simulation model that uses FOC algorithm for a PMSM, see “Design Field-Oriented
Control Algorithm” on page 1-2.

A basic understanding of Simulink is a prerequisite to follow these steps. For details about the ADC
driver, the quadrature encoder driver, and the hardware interrupt block, see the example model
mcb_pmsm_foc _qgep_f28379d, which uses an architecture similar to what we describe.



Add Hardware Drivers to Simulation Model and Deploy to Target Hardware

Note For target hardware other than LAUNCHXL-F28379D (connected to BOOSTXL-DRV8305), you
can follow these steps, but select the driver blocks (ADC, PWM, Interrupt) from the appropriate
supported hardware library.
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2-6

sk Scheduling in Target Hardware

In the example model mcb _pmsm_foc sim, configuring the current controller and the speed
controller are the two important tasks. The current controller is scheduled to run after every T, (50
psec for a 20 kHz switching frequency) and the speed controller runs after every T speeq (10*T). The
current controller reads the motor phase currents and position and computes the PWM duty cycle to
run the motor. The speed controller runs the control loop, calculates I; reference for the current
controller, and controls the motor speed in the closed-loop.

In the target hardware, the current controller is synchronized with the ADC interrupt (for every Tj)
and the speed controller is triggered after every T gpeeq (10*T5).

This figure shows the event sequence, interrupt trigger, and software execution time for the control
algorithm running in the target hardware.

LY AVAVAVAVAVANANAVANAVAVAN

Counter apc| |
soc PWM

N T Y N Y T I A I
ADC Conversion " ] r ;

ADC
EOC

ADC Interrupt i I I | I I I I I I I I I

(CurrentController

Algorithm) ! Current control algorithm execution time

Speed Controller I I

Speed control algorithm execution time

3 Ts_speed (Speed
{Ts (Current

In this figure, the execution times for the current controller and speed controller are not in scale. See
the processor datasheet to better understand the functionality of the processor peripherals such as
the ADC (analog-to-digital converter) and the PWM (pulse-width modulation).

The model follows this event sequence:

1 The processor peripheral PWM, which is center-aligned (Up-Down Counter), triggers the start-of-
conversion (SOC) event for the ADC module when the PWM counter value equals the PWM
period.

2 The ADC module converts the sampled analog signal into digital counts and triggers the end-of-
conversion (EOC) event.

The EOC triggers the ADC interrupt.
4 The current controller is scheduled to execute with the ADC interrupt.
The speed controller is scheduled to run after every T gpeeq-



Task Scheduling in Target Hardware

You can also use SoC Blockset™ for task scheduling, profiling, and addressing challenges related to
ADC-PWM synchronization, controller response, and studying different PWM settings. For details, see
“Integrate MCU Scheduling and Peripherals in Motor Control Application”.
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Adding ADC Driver Library Block

2-8

In the example model mcb _pmsm_foc sim, the subsystem for current controller receives the motor
phase current in ADC counts from the plant model that converts the motor phase current from
Amperes to ADC counts. In the target hardware, the current controller reads the motor phase current
from the ADC driver block. Follow this workflow to add and configure the ADC driver block.

These steps explain addition and configuration of the ADC driver blocks in detail. In the Simulink
library browser, select and add the ADC block from the F2837xD library in Embedded Coder Support
Package for Texas Instruments C2000 Processors. Use the following steps to configure the ADC
blocks to read the phase-A and phase-B currents of the motor.

In the Texas Instruments BOOSTXL-DRV8305 inverter hardware, the phase-A current of the motor is
read from ADC C2 channel and phase-B current is read from ADC B2 channel. In the ADC driver
block for phase-A current (see the following figure), select ADC module C and conversion channel 2
to obtain the phase-A current of the motor. In the ADC driver block for phase-B current, select ADC
module B and conversion channel 2 to obtain the phase-B current of the motor. For other target
hardware, select the ADC module and channel where the motor phase currents are interfaced.

Select ePWM1 ADCSOCA as the SOC trigger source in the ADC driver blocks for phase-A and phase-B
currents because the PWM library block triggers the start-of-conversion event SOC0O when the PWM
counter equals the PWM period register.

In the ADC driver block for phase-B current (that uses ADC module B), select ADCINT1. This
triggers an ADC interrupt at the end-of-conversion (EOC) event. When the ADC interrupt occurs, the
FOC current control algorithm executes.

In the block parameters dialog box of ADC driver block for phase-A current, configure the ADC C
module and channel 2 to read the phase-A current of the motor, as shown in this table.

Tab and Parameter in ADC Block Settings

SOC Trigger > ADC Module C

SOC Trigger > SOC trigger number S0OCo

SOC Trigger > SOC trigger source ePWM1 ADCSOCA
Input Channels > Conversion channel ADCIN2

Rename the block as ADC C IN2.



Adding ADC Driver Library Block

Block Parameters: ADC_C_IN2 X
C2802x/03x/05x/06x/M3x/37x/07x/004x/38x/002x ADC (mask) (link)

Configures the ADC to output data collected from the ADC pins on
the C2802x/C2803x/C2805x/C2806x/F28M3x/F2837x/F2807x/
F28004x/F2838x/F28002x processor.

SOC: Start of Conversion

EOC: End of Conversion

SOC Trigger  Input Channels

Block Parameters: ADC_C_IN2 X
C2802x/03x/05x/06x/M3x/37x/07x/004x/38x/002x ADC (mask) (link)

Configures the ADC to output data collected from the ADC pins on
the C2802x/C2803x/C2805x/C2806x/F28M3x/F2837x/F2807x/
F28004x/F2838x/F28002x processor.

SOC: Start of Conversion

EOC: End of Conversion

SOC Trigger  Input Channels

ADC Module C

|C0nversion channel |/ADCIN2

ADC Resolution | 12-bit (Single-ended input)

|SOC trigger number SOCO

SOCx acquisition window
15 E

|50Cx trigger source ePWM1_ ADCSOCA

ADCINT will trigger SOCx ' No ADCINT

Sample time:
-1

Data type: uintl6
[ Post interrupt at EOC trigger

OK

Cancel Help

Apply

Cancel Help

Apply

In the block parameters dialog box of ADC driver block for phase-B current, configure the ADC B

module and channel 2 to read phase-B current
ADCINT1, as shown in this table.

of the motor. In addition, configure ADC interrupt as

Tab and Parameter in ADC Block Settings

SOC Trigger > ADC Module B

SOC Trigger > SOC trigger number SOCO0

SOC Trigger > SOC trigger source ePWM1 ADCSOCA
SOC Trigger > Post interrupt at EOC trigger |on

SOC Trigger > Interrupt selection ADCINT1

SOC Trigger > ADCINT1 continuous mode on

Input Channels > Conversion channel ADCIN2

Rename the block as ADC B IN2.
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[*a] Block Parameters: ADC_B_IN2 X | | [Pa] Block Parameters: ADC_B_IN2 X
C2802x/03x/05x/06x/M3x/37x/07x/004%/38x/002x ADC (mask) (link) | | C2802x/03x/05x/06x/M3x/37x/07x/004x/38x/002x ADC (mask) (link)
Configures the ADC to output data collected from the ADC pins on Configures the ADC to output data collected from the ADC pins on
the C2802x/C2803x/C2805x/C2806x/F28M3x/F2837x/F2807x/ the C2802x/C2803x/C2805x/C2806x/F28M3x/F2837x/F2807x/
F28004x/F2838x/F28002x processor. F28004x/F2838x/F28002x processor.
SOC: Start of Conversion SOC: Start of Conversion
EOC: End of Conversion EOC: End of Conversion
SOC Trigger ~ Input Channels SOC Trigger  Input Channels
|ADC Module B - | |Conversion channel | ADCIN2 v
ADC Resolution |12-bit (Single-ended input) -
|50C trigger number |SOCO - |
SOCx acquisition window
15 I
|s0Cx trigger source |ePWM1_ADCSOCA -|
ADCINT will trigger SOCx |No ADCINT v
Sample time:
-1
Data type: uintlé v
| Post interrupt at EOC trigger |
|Interrupt selection ADCINT1 -|
| ADCINT1 continuous mode |
Cancel Help Apply Cancel Help Apply
F2837x/07x/38x
C_IN2 la_ADC
_ lab_fb_PU
lab_meas_PU P lab_meas_PU
ADC
ADC_C_IN2
S-Function Duty_Cycles
F2837x/07x/38x Duty Cycles
Qutport
B_IN2 Ib_ADC
ADC
ADC_B_IN2 Pos PU
S-Function =Sl = » Pos_PU
QEP_Position_Count
ldg_debug ——»—]
Terrminator
QEP_Index_Latch spesd_PU lb Id Idq_ref_PU
Outport Inport
Mux Demux Input Scaling Control_System
SubSystem w
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Adding Quadrature Encoder Driver Block

Adding Quadrature Encoder Driver Block

In the Simulink Library Browser, add the eQEP block from Embedded Coder Support Package for
Texas Instruments C2000 Processors > F2837xD.

The eQEP block reads the quadrature encoder pulses and increments the position count. This block
outputs the quadrature encoder pulse for the mechanical rotor position wraparound when the
quadrature encoder index pulse is read.

See the section Quadrature Encoder Interface Configuration in “Model Configuration Parameters” for
configurations related to the quadrature encoder.

In C28x eQEP block parameters dialog box, configure the quadrature encoder to read the quadrature
encoder pulse count in the Texas Instruments processor and wrap the pulse counter output when
index pulse is found as shown in this table.

Tab and Parameter in eQEP Block Settings
General > Module eQEP1
General > Sample time -1

Position counter > Qutput position counter |on

Position counter > Maximum position 27°16-1

counter value (0~4294967295)

Position counter > Position counter reset Reset on the first index event
mode

Position counter > Qutput latch position on

counter on index event

Position counter > Index event latch of Falling edge
position counter

Rename the block as eQEP.
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[*a] Block Parameters: eQEP s
C28x eQEP (mask) (link)

The enhanced quadrature encoder pulse (eQEP) module is used for direct
interface with a linear or rotary incremental encoder to get position, direction,
and speed information from a rotating machine for use in a high-performance
mation and position-control system.

The eQEP inputs include two pins for quadrature-clock mode or direction-
count mode, an index (or 0 mrker), and a strobe input.

General

Position counter ~ Speed calculation

["a] Block Parameters: eQEP *
C28x eQEP (mask) (link)

The enhanced quadrature encoder pulse (eQEP) module is used for direct
interface with a linear or rotary incremental encoder to get position, direction,
and speed information from a rotating machine for use in a high-performance
motion and position-control system.

The eQEP inputs include two pins for quadrature-clock mode or direction-
count mode, an index (or 0 mrker), and a strobe input.

L] Quadrature direction flag output port
Invert input QEPXA polarity

Invert input QEPxB polarity

Invert input QEPXI polarity

[ Invert input QEPxS polarity

[ Index pulse gating option

Sample time: |-1

Cancel Help

Apply

Compare output ~ “»||| General Position counter  Speed calculation = Compare output = 1 (P!
|Modu|e: eQEP1 - | |1 Output position counter |
Position counter mode: | Quadrature-count - |Maximum position counter value (0~4294967295): |2"15-1 | : I
Pasitive rotation: |Clockwise - || Enable set to init value on index event

[] Enable set to init value on strobe event
[ Enable software initialization

Position counter reset mode: Reset on the first index event A |

Output latch position counter on index event |

IIndex event latch of position counter: |Falling edge v I

(1 Output latch position counter on strobe event

Cancel Help Apply

eQEP1 module is selected because the quadrature encoder is connected to the QEP A interface on
the LaunchPadXL28379d hardware board. The sample time is -1 because the library block is
function-call triggered by the ADC interrupt synchronously. The maximum position counter value is
2716-1 because the position counter uses a 16-bit architecture in the library driver block. The
position counter reset mode setting wraps the position count when the index pulse is read.

Add the eQEP driver block module to the mcb_pmsm foc sim/Current control subsystem as

shown in this figure.
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Adding Quadrature Encoder Driver Block

F2837x/07x/38x
C_IN2

ADGC

ADC_C_IN2
S-Function

F2837x/07x/38x
B_INZ

ADC

A 4

la_ADC

lab_meas_PU

ADC_B_IN2
S-Function

C28x
qposcnt

osilat
eaep P

Ib_ADC

Pos_PU

eQEP
S-Function

| QEP_Position_Count

speed_PU

Mux

QEP_Index_Latch

lab_fo_PU

Pos_PU

()
Speed_PU

paac- Speed_fb
Outport

Input Scaling
SubSystem

Cor—
Idg_ref_PU
Inport

lab_meas_PU

Duty_Cycles

Pos_PU

Idg_debug

Idg_ref PU

Duty Cycles
Qutport

EE—
Terminator

Control_System
SubSystem
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Add PWM Driver Block

In the Simulink Library Browser, add the ePWM block from Embedded Coder Support Package for
Texas Instruments C2000 Processors > F2837xD.

Configure the ePWM1, ePWM2, and ePWM3 blocks for generating the PWM pulse. In the ePWM
block parameters dialog box, specify the pulse width modulation (PWM) counter period register value
calculated from CPU frequency and PWM frequency. For center-aligned PWM, divide the computed
value by 2.

PWM counter period = CPU clock frequency | PWM frequency [ 2
For more details, see the TMS320f28379d processor ePWM peripheral.

In the F2837x/07x/004x/38x ePWM block parameters dialog box, update these settings to configure
PWMI1 to generate PWM pulses in the target hardware.

Tab and Parameter in ePWM Block Settings

General > Module ePWM1

General > Timer Period Enter the PWM period value in the CPU clock
cycle

* PWM counter period = CPU clock frequency /
PWM frequency / 2

* For LaunchPad 28379D, clock frequency is
200 MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;

PWM counter period = 5000

Counter Compare > Specify CMPA via Input port
Counter Compare > CMPA initial value Enter the PWM counter period/ 2 (2500)
Counter Compare > Specify CMPB via Input port
Counter Compare > CMPB initial value Enter the PWM counter period/ 2 (2500)

Deadband unit > Use deadband for ePWM1A |on
Deadband unit > Use deadband for ePWM1B |on

Deadband unit > Deadband polarity Active high complementary (AHC)
Deadband unit > Deadband Rising edge 15

(RED) period (0~16383)

Deadband unit > Deadband Falling edge 15

(FED) period (0~16383)

Event Trigger > Enable ADC start of on

conversion for module A check box (only for

PWM1)

Event Trigger > Start of conversion for Counter equals to period (CTR=PRD)

module A event selection (only for PWM1)

Rename the block as ePWM1.
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Add PWM Driver Block

In the F2837x/07x/004x/38x ePWM block parameters dialog box, update the settings to configure
PWM2 and PWM3 to generate PWM pulses in the target hardware. PWM2 and PWM3 are
synchronized with PWM1. Follow ePWM1 configurations (other than Event Trigger) and add these

configurations.
Tab and Parameter in ePWM Block Settings
General > Module ePWM?2

General > Timer Period

Enter the PWM period value in the CPU clock
cycle

* PWM counter period = CPU clock frequency /
PWM frequency / 2

* For LaunchPad 28379D, clock frequency is
200 MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;
PWM counter period = 5000

General > Synchronization action

Set counter to phase value specified via
dialog

General > Counting direction after phase
synchronization

Count up after sync

General > Phase offset value (TBPHS)

0

Counter Compare > Specify CMPA via

Input port

Counter Compare > CMPA initial value

Enter the PWM counter period/ 2 (2500)

Counter Compare > Specify CMPB via

Input port

Counter Compare > CMPB initial value

Enter the PWM counter period/ 2 (2500)

Deadband unit > Use deadband for ePWM1A

on

Deadband unit > Use deadband for ePWM1B

on

Deadband unit > Deadband polarity

Active high complementary (AHC)

(FED) period (0~16383)

Deadband unit > Deadband Rising edge 15
(RED) period (0~16383)
Deadband unit > Deadband Falling edge 15

Rename the blocks as ePWM?2 and ePWM3.

The range varies from 0 to PWM counter period. PWM outputs when PWM up-counter matches
CMPA and PWM down-counter matches CMPB. By default, the system inputs a duty cycle of 50% by

selecting PWM counter period / 2.

On the Event Trigger tab of PWM1 module, configure the ADC start of conversion event to begin

when the PWM counter equals the PWM period.

Synchronize the ePWM?2 and ePWM3 blocks with the ePWM1 block by setting the synchronization
timing to the moment when the PWM counter equals to zero in the ePWM2 and ePWM3 blocks.
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F2837x/07x/38x

C_IN2 » »| la_ADC
ADC
ADC_C_IN2
S-Funetion
F2837x/07x/38x
B_IN2 »{1b_ADC
ADC
ADC_B_IN2
S-Function »
C28x
gposcit #| QEP_Position_Count
osilat
egep
eQEP
S-Function

QEP_Index_Lalch

Mux

Demux

lab_meas_PU

Pos_PU

speed PUF————»{( 2 )
poet PU e (2

Outport

Input Scaling

SubSystem

Speed_fb

lab_fb_PU
> lab_meas_PU
Duty_Cycles|———»(1 )
Duty Cycles
Qutport
»{ Pos_PU
Pos_PU
Idq_debug ——p—]
Terminator
Idq_ref PU

Idqg_ref_PU
Inport

Control_System
SubSystem

F2837x/07x/004x

ePWM1

ePWM1
S-Function

Jwa

F2837x/07x/004x

ePWM2

ePWM2
S-Function

WA

F2837x/07:/004x

ePWM3

ePWM3
S-Function

The ePWM blocks expect the duty cycle value to range from 0 to the PWM counter period value
(5000). The Control System subsystem outputs the PWM in the range -1 to 1. The model needs to
scale the output to 0 to 5000 (PWM counter period value).

F2837x/07x/38x

c_inz

ADC
ADC_C_IN2
S-Function

F2B37x/07x/38x

B_IN2
ADC
ADC_B_IN2
S-Function

Coax
qpdsen

la_ADC

lab_meas_PU

lab_fb_PU

Ib_ADC

Pos_PU

osilat
eaep P

eQEP
S-Function

EP_Position_Count

speed_PU

EP_Index_Latch

Mux Dermux

For simulation,
generation.
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Input Scaling
SubSystem

Pos_PU

Speed_fb
Outport

Idq_ref_PU
Inport

lab_meas_PU

Pos_PU

ldq_ref_PU

Duty_Cycles

target, PWM_Counter_Pericd

One_by_two
Gain Scale_to_PWM_Counter_Period
Gain

F2837x/07x/004x

ePWM1
ePWM1
S-Function

F2B37x/07x/004x

Constant

Idq_debug —————»—]

Control_System
SubSystem

Terminator

ePWM2

ePWM2
S-Function

F2837x/07x/004x

Demux

ePWM3
ePWM3
S-Function

add a variant source/sink to the hardware driver block for simulation and code




Add PWM Driver Block
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Add Hardware Interrupt Trigger Block for Current Control Loop

Speed_Ref
Step

=}
— Idq_ref_PU Duty_out
.—.—P.—DSpeed_Ref_Pu o -
DataTypeConversion  RateTransition S RateTransition Duty_Cycles Feedbacks_s‘m

In the Simulink Library Browser, select and add the C28x Hardware Interrupt block from Embedded
Coder Support Package for Texas Instruments C2000 Processors > Scheduling.

In the block parameters dialog box, update the settings to configure the hardware interrupt
ADCINT]1. Also, identify and update the CPU and PIE interrupts for the hardware interrupt ADCINT1.

Parameter in C28x Hardware Interrupt Block |Settings
CPU interrupt numbers [1]

PIE interrupt numbers [2]

In the current control subsystem, add a Trigger block and set the Trigger type block parameter to
function-call. Connect this subsystem trigger input to the C28x Hardware Interrupt block as
shown in this figure.

C28x

IRON

Interrupt
C28x Hardware Interrupt
S-Funetion

Trigger()

convert

B
=T

Goto

S] Speed_fo_PIL
H = - peed_fb_F
— Speed_Meas_PU - '. HSim.t Speea_
m m
From

RateTransition Raterlranztion C T Control Inverter and Motor - Plant Model
Speed Control urrent Contro SubSystem
SubSystem

SubSystem

In the Rate Transition block input to Current Control subsystem, change the Output port sample
time to - 1.

Add a Function-Call Generator block in variant source to support the model simulation. In the
Function-Call Generator block, set the Sample time parameter as T, (50e-6).

C28x

IRON

Interrupt

C28x Hardware Interrupt ) "
S-Function Iz
Function-Call Generator ==
S-Function

Trigger()

]

Speed_Rel
Step
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O o
convert Speed_Ref_PU = Idq_ref PU Duty_out
m m
DalaTypeConversion 4o Trariion RateTransition Duty_Gycles Feedbacks_Sim
IdgRef_PU
Goto
[m] Speed_fb_PIL
O 1 fb
Speed_Meas_PU m g BT SEdlin
m m
i Fram RateTransition
RateTransition C T Control Inverter and Motor - Plant Model
Speed Control urrent Contro SubSystem

SubSystem SubSystem

Simulate the model with the updated driver blocks and check the simulation results in the Simulation
Data Inspector. Variants ensure that ADC, PWM drivers, and interrupts are not active during
simulation.



Run in Open-Loop and Switch to Closed-Loop

Run in Open-Loop and Switch to Closed-Loop

When operating a permanent magnet synchronous motor (PMSM) with a quadrature encoder sensor,
we need an initial position to start running the motor. Because we do not have a method to determine
the initial position at the beginning (before starting the motor), run the motor using open-loop control
and ensure that the quadrature encoder index pulse is read at least once. At the quadrature encoder
index pulse, the quadrature encoder sensor resets its position to align with the mechanical angle of
the motor. The motor switches from an open-loop run to closed-loop speed control to maintain the
reference speed. This step is only applicable for a quadrature encoder sensor (and is not needed for a
Hall position sensor). A Hall sensor outputs the initial position of the rotor segment from the Hall
signal port inputs.

Follow these steps to implement an open-loop motor run with a transition to closed-loop control:

1 Copythemcb pmsm foc qep f28379d/Current Control/Control system subsystem to
your model. This adds the algorithm to run the motor in open-loop. This subsystem switches the
control from open-loop to closed-loop if EnClosedLoop input is 1. Add an input port
EnClosedLoop.

Addition of the Open Loop Start-Up subsystem adds the Data Store Read blocks for Enable and
SpeedRef. In addition, add the Data Store Memory blocks for Enable, EnClosedLoop, and
SpeedRef at the topmost level of the model.

When the open-loop run begins, the sign of SpeedRef (for algorithm details, see the Open Loop
Start-Up subsystem) decides the direction of the initial motor run. If SpeedRef is negative, the
motor spins in the opposite direction during the open-loop run.
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G >—
lab_meas_PU
Inport

T

lab_meas_PU
Idg_debug

Pos_PU
Pos_PU »(2)
Inport ldq_debug
Vah in PU Outport
Idq_ref_PU
ldg_ref_PU
Inport
Closed Loop Control
SubSystem
L3} p— = 0.5 1)
EnClosedLoop Duty_Cycles
Inport [ il Outport
Logic PWM_Duty >
—
Switch

Open Loop Start-Up
SubSystem

| EnClosedLoop

DataStoreWrite

2  Copy the mcb_pmsm foc gep f28379d/Current Control/Input Scaling/Calculate
Position and Speed subsystem to your model. This adds the IndexFinder subsystem to your
model. When quadrature encoder index pulse is detected for the first time, this subsystem sets
the IndexFound port to 1. Add an output port (that is connected to the IndexFound port) to the
Calculate Position and Speed subsystem and rename it to EnClosedLoop.



Run in Open-Loop and Switch to Closed-Loop
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NOT |e— z' |a
Logic Delay
T
»1 1 > 3)
IndexFound
Cutport
IndexFinder
SubSystem
. .
3  Connect the output port EnClosedLoop from the Input Scaling subsystem to the input port
EnClosedLoop in the Control_System subsystem as shown in this figure.
o
Trogaron
PR PR
C. la_ADC lab_meas_Pt L2 meas_PU
ADC BPWM1
oo oot PAM_Couror_ Poric] Pt
S-Functior Duty_Cycles| 8- ction
P 8 T
6 o = - VeraB  outpon
ADC R SPWM2
e 5 e . L | cam iz
S Funcicn S uncton
& S
- Inport Possion_Count] EnClosedLc
I s
ad D SHimdio
——
R O —Huamtr
speel o T PU
Oupon  lpon

Tnput Scaling Control_System
SubSysiem SubSystem

4 Copythemcb pmsm foc gep f28379d/Speed Control/Speed Ref Selector subsystem
to your model and integrate it with the speed controller subsystem. When the closed-loop control
begins, this subsystem provides the Speed Ref ouput signal. For a smooth transition from open-
loop to closed-loop, the speed measured is used as the speed reference during the open-loop run.
Add a Data Store Write block SpeedRef to the PI Controller Speed input port.
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IdgRel_PL

Mux Citpart

0
Id_ref
Constant
Speed_Raf_in [m]
Speed_Rel PU » ¥ Speed_rel PU
Speed_Rel PU " paed_Ref | Speed_Rel o m paed_rel_
Inpor Speed_Rel_Open
RataTransition
Speed Rel_Selector L lq ref PU
SubSystem
=
2 > # Speed_moas_PU
Spood_fb =
Speed_Meas_PU m m
Inpart RataTransition
Speed Conirol
SubSystem
5

switches to closed-loop. Select the step time of 0.1 and sample time of T ;oo

Delays

[inverter.C

1PU_System.|_base

MAX_ADC_CNT/2

Get ADC_Counts
Gain

CiSensBOffsel]

&

Limit: -MAX_ADC_CNTIZ to MAX_ADC_CNT/2

Saturale

Aading ADC offset Saturate

pmsm PositionOffset

=165V in ADC counts
Constant

Pos offset cormection

Theta_offsel_PU

indexOffset in PU
Constant

to reset the PI integrator before running the motor.

Add these default values in the Data Store Memory blocks:

Enable =1
EnClosedLoop = 0
SpeedRef = 0.25

Limit: 0t MAX_ADC_CNT  DataTypeConversion

In the plant model, add a step input to simulate the IndexFinder block for simulation. Rename the
step input to Switch to closed loop. See the mcb pmsm foc qep f28379d/Inverter
and Motor - Plant Model/Sensor Measurments subsystem to see how the step input

mem QEPSits* o ukits
Trota_m dean | © h ey Lj.s_.l
DataTypeCanversion

Get QEP_Counts
Gain

Swilch 1o closed loop DataTypaConversion
Step

The Data Store Memory blocks are used to share data across the subsystem.
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Run the simulation and observe the speed reference and the speed feedback signals.

Create Data Store Memory blocks for EnClosedLoop, Enable, and SpeedRef. Enable block is used

Sim o
Outport



Model Configuration and Hardware Deployment

Model Configuration and Hardware Deployment

Use these steps to select the target hardware in the Configuration Parameters dialog box.

1 In the Simulink model, click Hardware > Hardware Settings to open the Configuration
Parameters dialog box.

2  Open the Hardware Implementation tab and set Hardware board to TI Delfino F28379D
LaunchPad.

For any other custom board, navigate to the Hardware Implementation tab of the Configuration
Parameters dialog box and select the appropriate processor and edit the peripheral details in
Hardware board settings > Target hardware resources.

For the solver and quadrature encoder interface configuration details, see “Model Configuration
Parameters”.

Connect the Texas Instruments BOOSTXL-DRV8305 board and QEP connector to the Texas
Instruments LaunchPad XL hardware board. For hardware connection details related to Texas
Instruments C2000 LaunchPadXL, see “Hardware Connections”. The BOOSTXL-DRV8305 (attached
to the LaunchPadXL board) requires an enable signal. This signal is connected to the GPIO124 pin of
the processor.

In the Simulink Library Browser, add Embedded Coder Support Package for Texas Instruments
C2000 Processors > F2837xD > Digital Output. In the Digital Output block parameters dialog
box, change these settings:

Parameter in Digital Output Block Settings
GPIO Group GPI0120~GPIO127
GPIO124 on

Rename the block as GPIO 124.

Add a constant block with the value 1 as an input to the GPIO124 block as shown in this figure.

Enable

DataStoreMemory C28x

EnClasedLoop on . -
x
DataStoreMamory
Interrupt 1 GPIOX
_SpeedRel C28x Hardware Interrupt ~
S-Function i) DRVB305_EN GPIO DO

DataStoreMemary Function-Call Generator =, oo Constant GPIO_124
S-Function S-Function

Trigger()
[=] B
convert — Speed_Ref PU o Idq_ref PU Duty_out
mwm
Speed_Ref DataTypeConversion  RataTransition RateTransition Duty_Gycles Feedbacks_Sim —

IdqRef_PU

-l Speed_fb_PIL
» = peed_Meas_PU » Sim_fo Speed_fb
mW m mm

From o

RateTransition RateTransition Comart Control Inverter and Motor - Plant Model
Speed Control urrent Control SubSystem

SubSystem SubSystem

Step Goto

On the Hardware tab of the Simulink model, select Build, Deploy & Start. This generates the C
code, CCS project, and a target-specific . out file. The system uses serial communication to download
this target specific . out file to the target hardware and runs the downloaded algorithm in the
hardware.
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When the model is deployed to the target, the motor runs in open-loop and then runs in closed-loop
speed control. This example recommends that you use serial communication to monitor and debug
the signals. For details about implementing serial receive and transmit communications between the
host and target models, see the example model mcb _pmsm_foc qgep f28379d. From the Serial
Receive block, update the Enable Data Store Memory block to start and stop the motor using the
serial commands received from the host model.
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Validate System

In this section...

“Calculate Physical Motor Load in Target Hardware” on page 2-26

“Compare Speed Controller Response During Simulation With Target Hardware Results” on page 2-
27

“Compare Current Controller Response During Simulation With Target Hardware Results” on page
2-29

This section explains how to evaluate the accuracy of the plant (motor and inverter) model of the
physical motor and load connected to the motor. Validate the plant model and verify that the results
are close to the physical system measurements before using the plant model for implementing
advanced algorithms. You can validate the system by comparing the step response of speed control
and current control during simulation and after deployment to the target hardware connected to the
motor.

Use the example “Tune Control Parameter Gains in Hardware and Validate Plant” to measure the step
response of the current and speed controllers. The host model in this example communicates the
current reference to the target hardware and measures the step response of the current controller.

* You can use any speed control example from Motor Control Blockset to validate the system.

* Validate speed control by comparing the step response during simulation with the hardware test
values.

» Validate the d-axis current control by electrically or mechanically locking the rotor and comparing
the step response during simulation with the hardware test results.

You can use another method to validate the d-axis current control. Run the motor at a constant
speed and provide a step change in the reference d-axis current. This requires two modifications
in the speed control subsystem of the target model. Set a constant speed reference input.
Command I, reference from the host model. Compare the step response of the d-axis current
during simulation with the response obtained during the hardware tests.

* Validate the g-axis current control by mechanically coupling the motor with an external dynamo-
meter running in speed control. This requires two modifications in the speed control subsystem of
the target model. Discard the I; and I, reference from the speed PI controller output. Command I,
reference from the host model. Compare the step response of the g-axis current during simulation
with the response obtained during the hardware tests.

Warning When capturing the step response in d-axis current control, always use a positive step.
Negative values of I; can damage the permanent magnet in the PMSM.
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Host model for Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

Prerequisites:

1. Deploy the target model to the hardware HOST
mcb _pmsm_operating mode f28379d Serial
2.You should see and verify the variables from Setup c’“"'ltml : ’
the target model in the base workspace. . sefect Motor operating mode
Host Serial Setup %) Stap
Stepa: Open loop run
1. Select the port name in Serial 1 tab of Host
Serial Setup block. Scope —b[:] Torque control
2. Caution: Stop the motor when switching _ b Speed control
between the modes Serial Communication
Operating Mode Variables Monitor
Open-loop mode
Monitor Signal #1 Monitor Signal #2 ——
0.2 0.15
V_alpha V_alpha
Voltage ref (PU)  Speed ref (PU) V_beta V_beta
Motor torque control mode I_alpha |_alpha
— I_bet I_bet;
0 0 06 Unlock Pos lock - -
e Va_out Va_out
Id Ref (PU) lgRef (PU)  Speed limit (PU)
Vb_out Vb_out
Motor speed control mode
Ve_out Ve_out
0.2
@) la_meas la_meas
Speed Ref (PU) Ib_meas ®) Ib_meas
_ Id_ref Id_ref
Control |DO|3 gaing ld_meas Id_meas
d-axis current controller
Wd_ctrl_out Vd_ctrl_out
2.1651 4131.66290000000C lq_ref lq_ref
Kp Gain Ki Gain lg_meas lg_meas
g-axis current controller Vo_ctrl_out Vo_ctrl_out
2 1651 4131.66290000000C Position_meas Position_meas
) . Speed_ref Speed_ref
Kp Gain_ Ki Gain_
Speed_meas Speed_meas
Speed controller
0.9106 24.0901
Kp Gain__ Ki Gain__

Copyright 2020 The MathWorks, Inc.

See the example “Tune Control Parameter Gains in Hardware and Validate Plant” to deploy the model
to the hardware. Perform motor parameter estimation because an accurate plant model is important
to ensure that the simulation results match the hardware test results.

Calculate Physical Motor Load in Target Hardware

Before comparing the controller responses during simulation with the responses obtained after target
hardware deployment, the load torque in plant simulation must match the motor load in the physical
system. Follow these steps to calculate the load torque in the physical system and update the
calculated load torque in the plant model.
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Run the host model to connect it to the target hardware through serial communication.
Set Select Motor operating mode to Speed control.

The motor spins in speed control.

Select Id_meas in Monitor Signal #1 and Iq_meas in Monitor signal #2. Read the Id meas
and Iq meas values from the scope.

Convert the per-unit (PU) current to Amperes by multiplying it with PU_System.I base.
Calculate the load torque in Nm using this equation:

Tioad = 1.5 X pole_pair x [(flux_pm - I) + (Lq — Ly)Iq - Il
where,

flux_pm = Permanment magnet flux linkage (pmsm.Flux PM)
Ly, Ly = Inductance in Henry (pmsm.Ld, pmsm.Lq)

I, I = Current measured in Amperes

T4 meas, the measured I4 current (in PU), equals 0.

In the mcb_pmsm_operating mode f28379d/Motor and Inverter/Plant Model (sim)
sub system, provide the calculated load torque value as an input to the LdTrq port of the PMSM
motor block.

Compare Speed Controller Response During Simulation With Target
Hardware Results

During simulation, provide a speed step input and note the speed response. On the target hardware,
command the speed reference step input and observe the speed feedback. Compare the resulting
step response during simulation with the response obtained from target hardware to determine the
accuracy of the plant model.

1

7

Simulate the model mcb _pmsm operating mode f28379d. Plot the reference speed and the
measured speed signals. By default, this example provides a step input of 0.2 to 0.5 to the
simulation model.

Run the host model to communicate with the target hardware.
Change Select Motor operating mode from Stop to Speed control.

In the host model, select Speed_ref in Monitor Signal#1 and Speed_meas in Monitor
Signal#2.

Open the scope in the host model.

In host model interface, change the speed ref from 0.2 to 0.5 and observe the step change in
the scope.

Compare the step response obtained from the hardware with the simulation results.

Step Response Analysis for Speed Controller

Compare the step response obtained from simulation with the measurements obtained from the
target hardware. The results may vary depending on the tolerances in the plant model. Generally,
simulation results are close to the values measured on the target hardware.
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Step Speed Response - Simulation Results
| |
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Step Speed Response - Hardware Measurements
I I I

0.65F T T ™
Speed refin PU
06F Speed meas in PU | |
0.551 1
0.5 \//‘H\-_—‘—___'_
0.45F |
04+ -
0.35+ -
0.3 -
0.25F .
0.2 L [ 1 | 1 | 1 ]
Offset=30 -3.14 -3.12 -3.1 -3.08 -3.06 -3.04 -3.02
Peak overshoot |Peak time (ms) |Rise time (ms) Settling time
(%) (ms)
Simulation results [{20.13% 16.023 5.561 61.027
Hardware results |22 % 14.324 5.041 51.148

Compare Current Controller Response During Simulation With Target
Hardware Results

During simulation, provide a step current reference and note the current response. This example
needs some changes to simulate the current reference step input. Follow these steps to perform the
model changes. When using the target hardware, command the current reference step input and
observe the current feedback. Compare the resulting step response in simulation with the response
obtained from the target hardware to determine the accuracy of the plant model.

For hardware measurements, run the host model.
Change Select Motor operating mode from Stop to Torque control.
Select Id_ref in Monitor Signal#1 and Id_meas in Monitor Signal#2 in the host model.
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Open the scope in the host model.

2-29



2 Deploy and Validate System

2-30

Gy

Idg_ref PU

9

Change Id ref from 0.02 to 0.22 and observe the step change in the scope. Ensure that the
motor is not running. The scope displays the step response for the Id ref input.

For simulation, make these two changes in the model. In the
mcb_pmsm_operating mode f28379d/TorqueControl/Control Modes/torque control
subsystem add a step input for the d-axis current controller. Choose a step input of 0.02 to 0.22
at 1 second. Select time sample as - 1. In the data-type conversion block, select the output
datatype as fixdt(1,32,17).

Il
bParamin
bParamin
vavo e ()
i T D

Vabe_PU

SinCos
lab_meas_PU

convert
ldg_ref
Step

debug

ldg_meas

torgque_control

ldg_meas

In the PMSM motor block available in the mcb_pmsm_operating mode f28379d/Motor and
Inverter/Plant Model (sim) subsystem, change the Mechanical input configuration to
Speed and input 0 to the Spd input port.

Run the simulation and measure the Idref PU and Idmeas PU values in the Simulation Data
Inspector.

Compare the step response obtained from the hardware with the simulation results.

Step Response Analysis for d-axis Current Controller

Compare the scope results obtained from simulation with the measurements from the target
hardware. The results may vary depending on the tolerances in the plant model. With an accurate
plant model, the simulation results are closer to the measured results from the target hardware.
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0.25
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0.05

Current Controller (D-axis) Step Response - Simulation Results
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—
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1.0002 1.0004 1.0006 1.0008 1.001 1.0012 1.0014
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Current Controller (D-axis) Step Response - Hardware Measurements
I I | |

I I I 1 | |
‘_l_'__—\_\_\—\__h\___ —_ P
0.2 Id ref in PU 7
Id meas in PU
0.15F -
01k =
0.05F .
l_ﬁ
| 1 | | | | | 1 |

DI
OffcdfEdp -1.4634 -1.4632 -1463  -1.4628 -1.4626 -1.4624 -1.4622 -1462 -1.4618

Peak overshoot |Peak time (us) Rise time (us) Settling time

(%) (ns)
Simulation results |14 % 300 150 500
Hardware results [8.18 % 400 150 800

The accuracy of the plant model improves the accuracy of simulation, and therefore, it helps match
the simulation results to the hardware test results.

Tip If the simulation results differ considerably from the hardware measurements, verify the delay
and scaling factor in the plant model.

Note For the g-axis current controller, align the motor to the d-axis and mechanically lock the rotor.
Follow this for the d-axis current controller for comparative analysis. You can achieve external
mechanical locking through the mechanical braking system or by coupling with a dynamo-meter
motor running in speed control.
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* “Creating Plant Model Using Motor Control Blockset” on page 3-2

* “Use PMSM Block and Motor Parameters to Design Plant Model” on page 3-3

* “Add Average-Value Inverter Block” on page 3-5

* “Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
* “Create Position Sensing Subsystem” on page 3-7

* “Add Delay in Plant Model” on page 3-8

* “Integrate Blocks and Subsystems” on page 3-9



3 Plant Modeling

Creating Plant Model Using Motor Control Blockset

3-2

An accurate plant model is a vital part of motor control system development. After creating an
accurate plant model, you can verify the functionality of the control system, conduct closed-loop

model-in-the-loop tests, tune the controller gains using simulation, and optimize the algorithm before

you deploy the model in the actual plant.

When you create a plant model using Motor Control Blockset, you model these components to
simulate the functional behavior in a simulation environment:

* Permanent Magnet Synchronous Motor (PMSM)

* Average-value Inverter

* Sensors and signal conditioning circuits

* Processor peripherals: Analog-to-Digital converter (ADC) and Pulse-width-modulator (PWM)

You can verify the functionality of the plant model you create by:

Reading the normalized PWM duty cycle from the control algorithm.

Simulating the motor for the connected load.

Obtaining the output motor phase current (in terms of ADC counts) and the output motor
position (in terms of encoder pulse counts) from the simulation.

The workflow to create a plant model involves these steps.

Note See the plant model in the mcb pmsm foc gep f28379d.s1x model that is used in the
example “Field-Oriented Control of PMSM Using Quadrature Encoder”.

“Use PMSM Block and Motor Parameters to Design Plant Model” on page 3-3

“Add Average-Value Inverter Block” on page 3-5

“Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
“Create Position Sensing Subsystem” on page 3-7

“Add Delay in Plant Model” on page 3-8

“Integrate Blocks and Subsystems” on page 3-9
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Use PMSM Block and Motor Parameters to Design Plant Model

You can use the surface mount or interior PMSM blocks from Motor Control Blockset in two ways to
create a plant model.

» Estimate motor parameters by using Motor Control Blockset and open a Simulink model with
PMSM motor block (auto-populated with estimated parameters):

The Motor Control Blockset parameter estimation workflow helps you to determine the motor
parameters by performing a series of tests on the motor. For details, see “Estimate PMSM
Parameters Using Recommended Hardware”. After successfully estimating the motor parameters,
click Open Model in the parameter estimation host model. A new model opens with the Interior
PMSM block updated with the estimated motor parameters.

Select Board Test Status Fault Status

DRVE305 and F28379D La... ~ Over Current

Communication Port
Under Voltage

HOBT Run Stop
Serlal

Setup

Serial communication

Required Inputs Estimated Motor Parameters

Rs - ohm
Input DC Voltage: 24 v Signal from Target
H
Ld -
Nominal Current: 7.1 A (peak walue) -
H Spced
L -
Mominal Speed: 4000 R 1
Bemf —- Werlkrpm
Motor Inertia - Kg.m"2 - >
Nominal Vieltage: 24 v Signal
. - N.m.s
Sansor Salection: Sensorless = Friction constant
R . Save Target Models (F2E3TS0 + DRVEINI:
Mote: Following inputs are not required for sensorless e Open Model nCE_param_est f283750_DRWS300
Parameters MEb_param ECrIEss_TZ03T80_DRVEA0S

Position Offset: 0.B669 | Perunit N L =
Pesition Signal Conditioning and Scaling Thrlnﬂ Models tFEWWMI 'I- I:IIWIBH!::
mcb_param_gst_ 23068 DRV Z
Total QGEP Slits: 1000 MCE_param_Psi_Sensoress_Tzoitd_DRVE312
Shps Modeks to callbrate Hall Ofsel:
mck_pmsm_hall_cftset_123008m

1. Pravide required inputs.

2. Press Cirl+D to update the workspace

3. Build, Deploy & Start required target modeals
4. Run this model to estimate motor parameters

mchb_pmsm_hall_cifsel_TZ3378c

Models to callbrate QEP Offsel:
nch_pmsm_geap_ofsal_f2s0e8m

Copyright 2020 The MathWorks, Inc. MCh_pmsm_nep_ofsal_Tzo3780

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
I 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1 SeleatedSlgnal
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 T
1 1
1 1
1 1
1 1

* Create a new model and manually add the PMSM motor block from the Motor Control Blockset
library:

Create a new Simulink model and add the Surface Mount PMSM block from the Motor Control
Blockset library in the Simulink library browser. Open the block mask and enter the motor
parameters manually. You can obtain these parameters by using:

* The Motor Control Blockset parameter estimation workflow. For details, see “Estimate PMSM
Parameters Using Recommended Hardware”.

* The motor datasheet or from other known sources.
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3-4

&', Block Parameters: Surface Mount PM3M )(
Surface Mount PMSM (mask) (link)

Model the dynamics of a three-phase surface mount permanent magnet synchronous motor (PMSM)
with sinusoidal back electromotive force.

Block Options

Mechanical input configuration: Torque i
Simulation type: Discrete a
Sample Time (Ts): |252-6

Load Parameters:
File: | | Browse

Load from file Save to file

Parameters  [Initial Values

Number of pale pairs (P): |prmsm.p
Stator resistance per phase (Rs): pa_115|1-'|-F-ls i i [Ohm]
Stator d-axis inductance (Ldg_): 'pmsm.Ld ' il [H]
e | f 1l
) Ld'l'rq ,./ \ nio Permanent flux linkage constant (lambda_pm): = | | pmsm.FluxPM 113 [wb]
geaCurr Prysicl e, scous damping, S0 4K [y prom 8,01 |1 [Kgm2, Nirats, N
Phase
) Valher Mitrspd
Surface Mount PMSM [Cox || concel Help Apply

In Surface Mount PMSM block, set the Simulation type parameter to Discrete and the Sample
Time (Ts) parameter to 25e-6 (half of the control frequency). Discrete simulation improves the
simulation speed.

If the parameters are available in a MAT-file, click the Browse button on the block parameters
dialog to locate the MAT-file and then click Load from file to load the parameters.

The files containing the default motor parameters are available in the location <matlabroot>
\toolbox\autoblks\autoblksshared\mcbtemplates as a reference.

In the Surface Mount PMSM block parameters dialog, you can also represent the motor
parameters as workspace variables and use the model initialization script (m-script) to
automatically update these variables using the model initialization callback. Parameters of some
commercially available motors are available in the file mcb_SetPMSMMotorParameter.mas a
reference. For details about this m-script file, see “Estimate Control Gains and Use Utility
Functions”.
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Add Average-Value Inverter Block

In the Simulink model that contains the Surface Mount PMSM block, add an Average-Value Inverter
block from the Motor Control Blockset library. The Average-Value Inverter block reads the normalized
PWM duty-cycle and DC voltage input (in volts) and outputs the phase voltages. Connect the V.
output port of the Average-Value Inverter block to the PhaseVolt input port of the Surface Mount

PMSM block.
0.1
T fi
Late wE
Duty Cyclast
Inport D | PhaseCurr p

Aveara
.m,,_nif Vs Phasevolt

'/
e MirS|
Vu«: pd ?

Constant Surface Mount PMSM

Average-Value Inverter
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Create Motor Phase Current Sensing and Signal Conditioning
Subsystem

In the physical hardware, the motor current read by the current sensors is filtered and scaled to an
ADC measurable range. The ADC peripheral in the processor reads the current signals and outputs
the ADC counts for the current control algorithm. This figure shows an example of how you can model
the motor phase current sensing and signal conditioning algorithms.

MAX_ADC_CNT/2

/]

Limit: -MAX_ADC_CNT/2 to MAX_ADC_CNT/2
Saturate

1/PU_Systemn |_base

e
lab_ADC_Cnits

Adding ADC offset if DataTypeC araic
Gel_PU Get_ADC_Counts g 20 cset Lk 0t MAX_ADG_GNT - DataTypeComversion

Gal Gain

‘ [Inventer. CtSensAOfset inverter. CtSensBOMset] |

J

=1.65V in ADC counts
Constant

The maximum measurable peak current is considered as the base current. The ADC counts can be
calculated from the base current and full-scale ADC values, along with the ADC offset, by using this
equation:

(Full scale ADC counts/z)

ADC counts = -
Base current (in amperes)

+ ADC offset

For the default inverter and signal conditioning circuit parameters for commercially available
inverters, see the mcb_SetInverterParameters.m file. To add a new inverter configuration, create
an inverter type in this file and use this in the model initialization script for parameter initialization. If
you are using low-pass filters for measuring the current, add an average model to filter the current.
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Create Position Sensing Subsystem

The position sensing subsystem reads the motor position from the Surface Mount PMSM block and

simulates the QEP encoder pulse counts. The Surface Mount PMSM block outputs the mechanical
position of the motor in rad/s.

Convert the position in the range 0 to 21 rad/s to QEP encoder counts as shown in this figure.

| Get_PU

Pos_wrap(0-1)
G|
motor_mech_pos_rad mod el ru |
ta_m
Inport
mod QEPSIits*s
T GelPU ey 2 1 QEP_count
motar_pos, coun
: utpor
Sum
L Math Get_OEP_Counts
Constant
sain
Constant

pmsm PositionOffset

Theta_olset_PU

IndexOffset in PU

Constant

For details about detecting the QEP index position offset with respect to the rotor d-axis, see
“Quadrature Encoder Offset Calibration for PMSM Motor”.
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Add Delay in Plant Model

You can add delays in the plant model to simulate the control algorithm processing delays in the
hardware and the PWM switching delays. The algorithm processing delay in the processor is the time
taken to update the PWM. PWM switching delay is usually half the switching time period.

x_ADG_ T =

Limit: -MAX_ADC_CNT/Z o MAX_ADC_CNT2

Gel_ADC_Counts Limit: 0 to MAX_ADC_CNT
Gain Sawrate

Adding ADC offset

uuuuu

For adding delays in the discrete time solver with a sample rate of T,/2 (half the switching time
period), the processor computation delay and PWM switching delay are factored as Z! (T,/2).
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Integrate Blocks and Subsystems

The final step of designing the plant model using Motor Control Blockset is to integrate the blocks
and subsystems that you created earlier. The completed plant model accepts the normalized PWM
from the controller and outputs the motor phase currents and position.

[m]
Loec i singie. singls |
I D
Load_Profile (Torque) RaleTransition O
SubSystern
[
RT3
— Info RateTransition :
— —LdTrg ’ N info
O Ji \ - i
C———Hour e vae |—af 1 Prasecur L Wl T €
singhe = single single \ | tabe (double) double
Duty_Cycles 0 m \ m Om Feetj‘nanh sim
Inport RateTransition PhaseVolt g m—— PhaseCurr Outport
= i Rata Transitian
Average Inverter Surface Mount PMSM Sensor_Measurements
SubSystem SubSystem
—
Termi
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* “Check ADC Inputs” on page 4-2

*  “Verify PWM Outputs” on page 4-4

* “Check Hardware Connections” on page 4-6
* “Test Algorithm Design” on page 4-7

* “Check Generated Code” on page 4-8



4 Hardware Troubleshooting

Check ADC Inputs

4-2

Description

The analog to digital converter (ADC) can measure incorrect values. For example, in custom-designed
analog circuits, currents measured by ADC can be incorrect due to noise, out-of-phase measurements,
or sampling issues. This results in faulty feedback to the control system that leads to instability.

Action
Verify ADC Pin

See the hardware schematics and verify that you identified and configured the correct ADC pins for a
given measurement (a-phase, b-phase).

Verify ADC Block Configuration

Open the ADC block and verify that the Input Channels, ADC module, SOC trigger, SOCx
acquisition window parameters are configured correctly.

ADC sampling begins with the SOC event. In some cases, for example, when sensing the current
through the shunt resistors, ADC sampling requires synchronization with the bottom leg switches. In
this case, verify that the SOC event is configured correctly with ADC-PWM interrupt synchronization.
This also results in reduced EMI/EMC noise in the sampling because ADC conversion happens outside
the PWM transition. For more information, see “Task Scheduling in Target Hardware” on page 2-6.

Reduce Noise in ADC Sampling

You may notice noise in the ADC samples. This may happen either if there is EMI/EMC or if sampling
is faster than what the device can support. EMI/EMC can be reduced by improving the hardware
design.

To avoid problems due to faster sampling, see the device datasheet and determine the maximum
supported clock frequency of the ADC. For example, if you are using a Texas Instruments
TMS320F28379D series microcontroller, it can support a CPU clock frequency of 200 MHz, but the
maximum clock frequency supported by the ADC module is 50 MHz. Use this value to set ADC clock
prescaler (ADCCLK) parameter on the Hardware Implementation tab in the Configuration
Parameter dialog box of your model.

Check VDD of Current Measurement Device

Many current measurement devices derive VDD from the DC power supply (Vpc). In addition, the
device enable pin also determines the supply voltage to the internal current measurement circuit (for
example, Texas Instruments BOOSTXL-DRV8305). Absence of VDD (or the device enable pin) results
in 0 V at the ADC of the target hardware. Ensure that these conditions are not present in your
hardware.

Check ADC Current Conventions

Check if you are using the correct conventions for ADC current sensing. Motor Control Blockset
considers the current entering the motor (or leaving the inverter) as positive. This convention
changes with the hardware because of the differences in the inverting or non-inverting op-amp and



Check ADC Inputs

the analog current sensing circuit. Check the inverter current sensing circuit op-amp and set the
inverter.invertingAmp variable (control parameter) to:

* 1 — If the current sensing circuit detects the current entering motor as positive.
» -1 — If the current sensing circuit detects the current entering motor as negative.

For more information about setting a control parameter, see “Estimate Control Gains and Use Utility
Functions”.

Test Readability of Unipolar and Bipolar Signals
Check if the measurement circuit is designed to read unipolar and bipolar signals.

Check if the inverter.ISenseVoltPerAmp variable (control parameter) is set correctly according
to the hardware specification. For more information about this parameter, see “Estimate Control
Gains and Use Utility Functions”.

DC signal measurement circuits are usually unipolar. For example, BoostXL-DRV8305 has a DC
voltage measurement circuit that converts the voltage range of 0 - 44.3 Vto 0 - 3.3 V at the ADC.
Voltage ADCs cannot measure negative voltages.

AC signal measurement circuits are usually bipolar. For example, BoostXL-DRV8305 has an AC
current measurement circuit that converts the current range of -23.57 to +23.57 Ato 0 - 3.3 V at the
ADC with an offset of 1.65V.

Check ADC Offset and Gain computation

Verify the ADC offset values before deploying and executing the code on the target hardware. For
more information, see “Current Sensor ADC Offset and Position Sensor Calibration”.

Check the accuracy of the computed gain for conversion of the ADC counts to signal value in the real
world as described in the previous section.

Check ADC Resolution

Check the ADC resolution to determine the minimum value of the signal that it can measure. For
example, a 3.3 V 12-Bit ADC that can measure £16.5 A has a resolution of 0.1 Volts/Ampere. The
minimum current that the ADC can measure (excluding EMI/EMC and noise) is approximately 8 mA.

Determine the minimum measurable current by the ADC. Verify that this current is greater than the
ADC signal-to-noise ratio, tolerance, and errors. Ensure that you simulate and check the model before
deploying it to the target hardware.

Low ADC resolution can result in difficulties when implementing sensorless algorithms to control
motors that consume very small currents (for example, 50 mA AC) on no load. In addition, EMI/EMC
and noise affects ADC measurements. It is a good practice to simulate the model and verify if the
ADC resolution is appropriate. Increase the gain of the sensor amplifier on the hardware to increase
the ADC resolution.
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Verify PWM Outputs

4-4

Description

The motor control algorithm generates the pulse width modulation (PWM) signals to control the
motor through inverter. In some cases, the PWM signals can be incorrect due to improper switching
frequency, wrong interrupt and PWM generation configurations, or error in the duty cycles. Incorrect
PWM signals result in improper switching of the inverter.

Action
Verify PWM Frequency

Use an oscilloscope to verify that the generated PWM signals has the expected switching frequency.

In embedded targets, configuration of the PWM module depends on factors such as target hardware
and clock frequency. For example, you can use these equations to calculate PWM Counter Period for
Texas Instruments C2000 targets that have the ePWM module configured to work with the Up-Down
counting mode:

CPU frequency (Hz) = 200e6

PWM frequency (Hz) = 20e3

PWM Counter Period (PWM timer counts) = CPU frequency/ PWM frequency/ 2
Verify PWM Generation

Ensure that you feed a correct PWM duty cycle to the switching device (for example, MOSFET or
IGBT). PWM generation depends on these active-high and active-low configurations:

* Active high — 25% duty results in 25% on-time for upper leg MOSFET or IGBT (recommended).
* Active low — 25% duty results in 75% on-time for upper leg MOSFET or IGBT.

In addition, check if there is any inversion of the PWM signal between the target and MOSFET due to
the gate driver or isolator circuit (25% gate pulse must be 25% on-time by the driver chip).

Verify Interrupt Configuration

Majority of the controller algorithms are designed to work with the ADC-PWM synchronization for
advantages like current sensing, reduced EMI/EMC interference.

ADC sampling begins with the SOC event. In some cases, for example, when sensing the current
through the shunt resistors, ADC sampling requires synchronization with the bottom leg switches. In
this case, verify that the SOC event is configured correctly with the ADC-PWM interrupt
synchronization. This also results in reduced EMI/EMC noise in the sampling because ADC
conversion happens outside the PWM transition. For more information, see “Task Scheduling in
Target Hardware” on page 2-6.

Verify Updates to PWM Duty

Verify if the PWM duty is updated or refreshed in synchronization with the PWM module. To
implement a robust control, it is a good practice to timely refresh the PWM duty (for example, once in
Tpwm, preferably before T/ 2).
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Check Behavior at PWM Generation Limits

Check the datasheet of the PWM driver circuit for support at the 0% duty and 100% duty limits. For
functional safety, it is a good practice to limit the maximum duty cycle somewhere between 95 and
98% by setting the corresponding value in the DQ Limiter block.

Check for Incorrect PWM Generation Configuration

Verify that the hardware uses the correct PWM generation configuration. For example, BoostXL-
DRV8305 supports 3-PWM mode, 6-PWM mode, and 1-PWM mode.

Check for Default Dead Bands

Check if there are dead bands introduced by the motor driver board. Consider this while generating
dead bands from the PWM module.

Confirm Maximum Switching Frequency

Determine the maximum possible switching frequency for the inverter and driver from the device
datasheets. Ensure that the model does not exceed this value.



4 Hardware Troubleshooting

Check Hardware Connections

4-6

Description

When you try to run the motor, you may face problems due to incorrect hardware connections. This
may result in rise in temperature of the motor, inverter, hardware board or an abnormal behavior
such as uncontrolled motor speed.

Action

Verify Hardware Connections

Check the wiring and connections before getting started. For details, see “Hardware Connections”.
For instructions to determine the serial port connected to the hardware, see “Find Communication
Port”.

Manually Check Rotation of Shaft

Verify that the shaft of your motor is rotating freely with minimal rotational friction. A mechanical
failure in the bearings may result in thermal overloads, which can damage the motor windings.

Verify Rated Currents for Motor and Inverter

Determine the rated currents of the motor and inverter from the manufacturer datasheet. Ensure that
you do not overload the motor for durations longer than what the original equipment manufacturer
(OEM) has specified.

Check Motor and Inverter Temperature

Ensure that the temperature of the motor windings and inverter heat sink are within the expected
temperature range. Overloading the hardware results in excessive heat that can damage the
hardware.

Verify Measurements from Analog Circuits

Verify the range of the signals that you measure from the analog circuits (for example, the maximum
current of the inverter).

Check for Additional Resistors

After you complete the process of estimating the motor parameters, you should not change the motor
connections because this leads to differences in the contact and cable resistances. In addition, verify
that the initialization script of the model takes into consideration any additional resistors present in
the power circuit.

Verify Fault Pin and Enable Pin Connections

Check and verify that the fault pins and enable pins are connected correctly on the target hardware
board.
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Test Algorithm Design

Description

When simulating or running a model on the target hardware, you can face problems because of
defects in the implementation of the control algorithm. This can lead to an uncontrolled motor speed,
differences in the current waveforms or mismatch in PI controller gains between simulation and
target hardware.

Action
Verify Parameters and Other Input Data

Verify that you identified and entered the inputs (for example, motor and inverter parameters, clock
speed, and switching frequency) correctly. If the input data is incorrect, the motor control algorithm
will not work. Use the Motor Control Blockset parameter estimation tool to compute the motor
parameters. For more details, see “Estimate PMSM Parameters Using Recommended Hardware”.

Verify Waveforms of Measured Currents

After you load the motor shaft, verify that the waveforms for the measured signals match the shape
visible in the simulations. For example, field-oriented control ensures perfect sinusoidal waveforms
for currents. For exceptions, see “Check ADC Inputs” on page 4-2.

Verify Control System Design

Verify that all the controllers used in the model (for example, PI controllers and sliding mode
observer) are designed correctly.

You can start by simulating the model by using the estimated motor parameters before deploying the
model to the target hardware. Observe and verify the step responses for the current and speed by
using both simulation and deployment on the target hardware.

Model-Based Design ensures that correct simulation of the model results in identical outcomes on the
target hardware with identical gains (that match the gain values computed during simulation) for all
the controllers.

Verify Signal Representation

Check if you can represent the signals correctly for a selected data type. For example, it is not
possible to store the value 1024 in the 8-bit data-type. Similarly, it may not be possible to represent
some gain values in the selected fixed-point resolution.

Verify Base Values for PU Representation

If you are working with the Per-Unit system, please check that the base value of a quantity (for
example, base current), is selected correctly. For more details, see “Per-Unit System”.
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Check Generated Code

4-8

Description
When simulating or running a model on the target hardware, you may face problems due to errors in

the software architecture of a model. These errors can affect the performance of control algorithm
and increase the code execution time on the hardware.

Action

Check Sample Times

Verify the base rates and other execution rates of the model by using Debug > Information
Overlays > Sample Time > Colors. The different sample times of the model decide the execution of
different tasks in the simulation and in the generated code.

Check for Overruns

Verify that there are no overruns beyond the available sample time. Algorithms with overruns affect
the control system stability. If required, optimize the model for code execution. For more details, see
“Code Verification and Profiling Using PIL Testing” on page 1-15.

Verify Low-Priority Interrupt Service Routines (ISR)

Verify that the low-priority interrupt service routines (ISR) (for example, speed control loop and
communication service routines) are executed according to the design and are not ignored by any
overruns in the high-priority ISRs.

Check Execution Order Priority

Check that the model uses a correct execution order priority. Verify that all the interrupts are
configured correctly.

Verify Software Initialization

To allow the analog circuits to get ready, check that the software initialization delay (for example,
ADC blanking time, PWM driver, and charge pump) is greater than the required value specified by the
manufacturer (for example, 2pus).

Check Hardware Initialization

Verify that you initialized the target hardware and inverter correctly. Generally, the driver is disabled,
which brings all the switches to a high impedance state and initializes the important variables to the
default values.

Verify Third-Party Tool Version

Verify that you are using the recommended versions of the third-party tools. Check that bugs in the
third-party software do not cause regressions.
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